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Introduction: Deep Epistemic Uncertainties in Digital Twinning

Digital twinning of civil infrastructure, spanning design, construction, maintenance, operation, and

emergency recovery, confront deep uncertainties on multiple fronts. At a macro level, these uncer-

tainties include:

Physical: e.g., climate change altering environmental loads.

Technical: e.g., the adoption of emerging technologies that affect simulation fidelity.

Socioeconomic: e.g., policy shifts and planning decisions that impose subjective constraints.
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Figure 1. Digital twinning for civil structures: (a) life-cycle bridge as an example; (b) interacting foundational blocks of

digital twinning.

At a micro level, many deep uncertainties arise from an overlooked domain - problems that are in-

herently NP-hard, where global optimal decisions are effectively “lost” in combinatorial complexity.

This domain is characterized by a myriad of interwoven logical rules (e.g., design specifications, in-

spection manuals, and assessment guidelines) that have evolved from decades of civil engineering

research. These deep epistemic uncertainties (DEUs) may partly result from professional practices,

but they fundamentally stem from a lack of advanced computational intelligence. Consequently,

the common approach of relying on engineers or stakeholders to apply rules, logic, and contextual

judgment to navigate these complexities is widely accepted yet intrinsically flawed.

Therefore, we assert that while current digital twin architectures are built on three well-developed

foundational blocks (Fig. 1), they lack an integrated layer for processing deep epistemic uncertain-

ties and effectively interfacing with human experts.
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Figure 2. Adaptive Agentic AI interfacing digital twinning, engineering knowledge, and human users.

We propose an Adaptive Agentic AI Workflow that integrates a hierarchical, adaptive decision-

making process into digital twinning (Fig. 2):

ATLAS Integration: The chief planner agent, ATLAS: Adaptive Tactical Leadership and

Agentic Symbiosis, leverages symbolic AI (including STRIPS-based planning) to formulate

robust high-level strategies and directly interfaces with human users to incorporate expert

knowledge and contextual judgment.

Operator Agents: Generative AI-enabled operator agents interact with the digital twin’s

foundational technologies—physical modeling, sensing and monitoring, and discrete-event

simulation—to continuously simulate, update, and adapt system representations in real time.

This framework is uniquely suited to manage multi-modal deep epistemic uncertainties in digital

twinning through:

Hierarchical Adaptivity: A dual-layer structure that provides both strategic oversight and

operational flexibility.

Human-AI Symbiosis: Direct interaction with human experts ensures that contextual insights

and domain-specific nuances are embedded within the decision-making process.

In this preliminary work, we showcase:

1 ATLAS for implementing a digital twinning-assisted structural inspection process.

2 Implementation of an Operator Agent that transforms engineering documents into

knowledge graphs for design automation.

Digital Twinning Enabled Structural Inspection

Structural inspection has long been a critical yet predominantly manual process for the routine as-

sessment of structures. To date, engineers employ advanced equipment—such as drones, LiDAR,

and various nondestructive evaluation methods—to perform inspections. Although thorough in-

spection, marking, and coding steps are well documented (Fig. 3 [3]), executing a standardized,

systematic plan in the field remains a significant challenge.

Figure 3. Curated engineering knowledge: structural inspection,

marking, and coding for highway bridges.

Our proposed methodology leverages

the Adaptive Agentic AI Framework to

transform this process:

ATLAS Integration: The Chief

Planner, ATLAS, interfaces with

an inspection-centric Knowledge

Graph to gather context-specific

information and best practices.

AI-Driven

Execution: AI-enabled Operator

Agents seamlessly execute these

plans by coordinating various

physical and discrete-event

simulations, thereby enhancing

the accuracy and efficiency

of structural assessments.

This integrated approach aims to stan-

dardize and optimize structural inspec-

tion processes within a digital twin environment, effectively managing the deep uncertainties in-

herent in field engineering operations.

STRIPS Modeling for Optimal Structural Inspection Planning

ATLAS, our chief planner, generates a STRIPS-based planning model that defines the sequential

actions and state transitions required to transform raw inspection data into actionable reports (a

partial code snippet is shown below):
;; Predicates representing workflow states (:predicates
(eventdatacollected)(structuredatacollected)(globaldamagedecided)(componentdatacollected)(localdamagedecided)(reportgenerated))
;; ACTION A: Collect event/structure info (:action collecteventstructureinfo : parameters() :
precondition(and(not(eventdatacollected))(not(structuredatacollected))) : effect(and(eventdatacollected)(structuredatacollected)))
;; ACTION B: Global damage decision (:action globalstructuredamagedecision : parameters() :
precondition(and(eventdatacollected)(structuredatacollected)(not(globaldamagedecided))) : effect(globaldamagedecided))
;; ACTION C: Local damage decision (:action localcomponentdamagedecision : parameters() :
precondition(and(globaldamagedecided)(not(componentdatacollected))(not(localdamagedecided))) :
effect(and(componentdatacollected)(localdamagedecided)))
;; ACTION D: Reporting (:action
generatef inalreport : parameters() : precondition(and(localdamagedecided)(not(reportgenerated))) : effect(reportgenerated)))

Advanced algorithms for optimal planning (e.g., reinforcement learning [1]) can ensure that the

plan adapts dynamically to field conditions, thereby facilitating robust structural assessment and

reporting.

Finite-state Machine Simulation of Inspection

We envision that, for training and interactive augmentation of digital twinning-enabled structural

inspection, a specialized Operator Agent can be designed to simulate inspection events based on

a tentative optimal inspection plan. By interfacing with ATLAS, it further supports interaction with

end-users (Fig. 4a). Preliminary testing was conducted in a video game scenario using the Unity

3D engine and the OpenAI GPT-3.5 API, enabling natural language-based prompting and plan

enhancement through ATLAS (Fig. 4b).
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Figure 4. (a) Finite-state machine space for executing an optimal inspection plan; (b) ATLAS interfacing with end-users

(simulated in a gaming context).

Digital Twinning Enabled Design Automation

Geotechnical and structural design is a well-established process performed by engineers in numer-

ous design firms. Yet, automating this process has long been deemed impractical, largely due to the

challenges of handling unstructured field reports and an overwhelming number of design specifi-

cations and rules. We argue that digital twinning—built on classical foundational technologies—can

support design automation; however, deep uncertainties in managing field information and design

logic must first be addressed. Initially, the digital twin may manifest only as a 3D geometric model

(e.g., from architectural outputs), but it evolves as it integrates with the design process.

Leveraging recent advances in Generative AI, we propose an agentic workflow for digital twinning-

enabled design automation, focusing on highway bridge structures. Highway bridge design is char-

acterized by a limited selection of superstructure types, while substructure systems are highly de-

pendent on site conditions. In practice, site reports can span hundreds or even thousands of pages

(Fig. 5a).

Figure 5b illustrates our agentic workflow, where multiple Operator Agents collaborate with the

universal ATLAS (Chief Planner) Agent.
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Figure 5. Conceptual schematics for digital twinning-enabled design automation for bridge foundations.

Design Automation via Test-time Scaling

We recognize that the design process is a highly structured “chain-of-thought” (CoT) process [6].

With modern reasoning-ready LLMs, engineering design automation can be realized through test-

time scaling—that is, by leveraging inference compute. A few studies have been proposed for

materials and drug design [5, 2]. In this work, we present preliminary results demonstrating the use

of LLMs to generate engineering reports from knowledge graphs that support CoT generation of

design processes. This approach will serve as the basis for further research toward developing a

design automation-capable ATLAS system.
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Figure 6. (a) Neo4j graph of the site report in Fig. 5a and (b) CoT prompting.
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